Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K
نویسندگان
چکیده
Black phosphorus attracts enormous attention as a promising layered material for electronic, optoelectronic and thermoelectric applications. Here we report large anisotropy in in-plane thermal conductivity of single-crystal black phosphorus nanoribbons along the zigzag and armchair lattice directions at variable temperatures. Thermal conductivity measurements were carried out under the condition of steady-state longitudinal heat flow using suspended-pad micro-devices. We discovered increasing thermal conductivity anisotropy, up to a factor of two, with temperatures above 100 K. A size effect in thermal conductivity was also observed in which thinner nanoribbons show lower thermal conductivity. Analysed with the relaxation time approximation model using phonon dispersions obtained based on density function perturbation theory, the high anisotropy is attributed mainly to direction-dependent phonon dispersion and partially to phonon-phonon scattering. Our results revealing the intrinsic, orientation-dependent thermal conductivity of black phosphorus are useful for designing devices, as well as understanding fundamental physical properties of layered materials.
منابع مشابه
Anisotropic Thermal Conductivity of Exfoliated Black Phosphorus.
The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direct...
متن کاملAnisotropic in-plane thermal conductivity observed in few-layer black phosphorus
Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m(-1) K(-1) for black phosphorus films thicker ...
متن کاملTemperature Dependence of Anisotropic Thermal-Conductivity Tensor of Bulk Black Phosphorus.
The anisotropic thermal-conductivity tensor of bulk black phosphorus (BP) for 80 ≤T ≤ 300 K is reported. Despite the anisotropy, phonons are predominantly scattered by Umklapp processes in all the crystallographic orientations. It is also found that the phonon mean-free-paths of BP are rather long (up to 1 µm) in the through-plane direction.
متن کاملاثر تهیجایهای گسترده بر خواص گرمایی نانونوارهای آرمچیری گرافن
This paper shows a theoretical study of the thermal properties of armchair grapehen nanoribbons in the presence of extended vacancies. Each graphene nanoribbons formed by superlattices with a periodic geometric structure, different size and symmetry of vacancies. The phonon dispersion, specific heat and thermal conductivity properties are described by a force-constant model and also by Landauer...
متن کاملAnisotropic intrinsic lattice thermal conductivity of phosphorene from first principles.
Phosphorene, the single layer counterpart of black phosphorus, is a novel two-dimensional semiconductor with high carrier mobility and a large fundamental direct band gap, which has attracted tremendous interest recently. Its potential applications in nano-electronics and thermoelectrics call for fundamental study of the phonon transport. Here, we calculate the intrinsic lattice thermal conduct...
متن کامل